Alternating difference block methods and their difference graphs
نویسنده
چکیده
The general concept of a class of alternating difference block methods and their difference graphs are introduced. The methods are unconditionally stable, and according to the difference graphs the design of parallel algorithms and programs of the methods are flexible and easy. The traditional alternating explicit-implicit method, the AD1 method, the AGE method, the Block AD1 method and the ABE-I method are all the special cases of this class of methods. Their difference graphs are presented.
منابع مشابه
Alternating Implicit Block FDTD Method For Scalar Wave Equation
In this paper, an alternating implicit block method for solving two dimensional scalar wave equation is presented. The new method consist of two stages for each time step implemented in alternating directions which are very simple in computation. To increase the speed of computation, a group of adjacent points is computed simultaneously. It is shown that the presented method increase the maximu...
متن کاملRelative difference sets fixed by inversion and Cayley graphs
Using graph theoretical technique, we present a construction of a (30, 2, 29, 14)-relative difference set fixed by inversion in the smallest finite simple group—the alternating group A5. To our knowledge this is the first example known of relative difference sets in the finite simple groups with a non-trivial forbidden subgroup. A connection is then established between some relative difference ...
متن کاملNumerical Assessment of Finite Difference Time Domain (FDTD) and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain (CE-ADI-FDTD) Methods
A thorough numerical assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain Methods has been carried out based on a basic single mode Plane Optical Waveguide structure. Simulation parameters for both methods were varied and the impact on the performance of both numerical methods is investigated.
متن کاملHigh-accuracy alternating segment explicit-implicit method for the fourth-order heat equation
Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-impli...
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007